Digital Communication Systems ECS 452

Asst. Prof. Dr. Prapun Suksompong

prapun@siit.tu.ac.th
5. Channel Coding

Office Hours:

Check Google Calendar on the course website.
Dr.Prapun's Office:
6th floor of Sirindhralai building, BKD

Review: Channel Encoder and Decoder

System Model for Chapter 5

$\underline{\mathbf{m}}, \underline{\mathbf{d}}, \underline{\mathbf{b}}, \underline{\mathbf{s}}$
Message (Data block)

Channel Encoder

Add systematic redundancy
$\underline{\hat{\mathbf{m}}}, \underline{\hat{\mathbf{d}}}, \mathbf{b}, \underline{\hat{\mathbf{s}}}$
Recovered Message

Vector Notation

- $\overrightarrow{\mathbf{V}}$: column vector

$\overrightarrow{0}, \underline{0}$: the zero vector

 (the all-zero vector)$\overrightarrow{1}, \underline{1}$: the one vector
(the all-one vector)

- $\underline{\mathbf{r}}$: row vector

$$
\left(r_{1}, r_{2}, \ldots, r_{i}, \ldots r_{n}\right)
$$

- Subscripts represent element indices inside individual vectors.
- v_{i} and r_{i} refer to the $i^{\text {th }}$ elements inside the vectors $\overrightarrow{\mathbf{v}}$ and $\underline{\mathbf{r}}$, respectively.
- When we have a list of vectors, we use superscripts in parentheses as indices of vectors.
- $\overrightarrow{\mathbf{v}}^{(1)}, \overrightarrow{\mathbf{v}}^{(2)}, \ldots, \overrightarrow{\mathbf{v}}^{(M)}$ is a list of M column vectors
- $\underline{\mathbf{r}}^{(1)}, \underline{\mathbf{r}}^{(2)}, \ldots, \underline{\mathbf{r}}^{(M)}$ is a list of M row vectors
- $\overrightarrow{\mathbf{v}}^{(i)}$ and $\underline{\mathbf{r}}^{(i)}$ refer to the $i^{\text {th }}$ vectors in the corresponding lists.

Harpoon

- a long, heavy spear attached to a rope, used for killing large fish or whales

Channel Decoding

- Recall

```
MAP decoder
    is optimal
```


ML decoder is
optimal

Min distance
decoder is optimal
Codewords
are equally
likely

MAP decoder is the optimal decoder.
When the codewords are equally-likely, the ML decoder the same as the MAP decoder; hence it is also optimal.
When the crossover probability of the $\mathrm{BSC} p$ is <0.5,
ML decoder is the same as the minimum distance decoder.

- In this chapter, we assume the use of minimum distance decoder.
- $\underline{\hat{\mathbf{x}}}(\underline{\mathbf{y}})=\arg \min _{\underline{\mathbf{x}}} d(\underline{\mathbf{x}}, \underline{\mathbf{y}})$
- Also, in this chapter, we will focus
- less on probabilistic analysis,
- but more on explicit codes.

Digital Communication Systems ECS 452

Asst. Prof. Dr. Prapun Suksompong

prapun@siit.tu.ac.th
5.1 Binary Linear Block Codes

Two familics of codes bloch (5.1)

Review: Block Encoding

- We mentioned the general form of channel coding over BSC.
- In particular, we looked at the general form of block codes.

${ }^{\bullet}(n, k)$ codes: $\underline{n-\text { bit blocks }}$ are used to conveys k-info-bit blocks
- Assume $n>k$

System Model for Section 5.1

$\underline{\mathbf{m}}, \underline{\mathbf{d}}, \underline{\mathbf{b}}, \underline{\mathbf{s}}$

- $\mathcal{C}=$ the collection of all codewords for the code considered.
- Each n-bit block is selected from \mathcal{C}.
- The message (data block) has k bits, so there are 2^{k} possibilities.
- A reasonable code would not assign the same codeword to different messages.
- Therefore, there are 2^{k} (distinct) codewords in \mathcal{C}.

Choose $M=2^{k}$ from
2^{n} possibilities to be
used as codewords.
$C=\left\{\underline{x}^{(1)}, \underline{x}^{(3)}, x^{(3)}, x^{(4)}\right\}$

- Ex. Repetition code with $n=3$

$$
C=\{000,111\}
$$

MATHEMATICAL SCRIPT CAPITAL C

Charbase

A visual unicode database
\leftarrow U+1D49D INVALID CHARACTER
U+1D49F MATHEMATICAL SCRIPT CAPITAL $D \rightarrow$
U+1D49E: MATHEMATICAL SCRIPT CAPITAL C

GF(2)

- The construction of the codes can be expressed in matrix form using the following definition of addition and multiplication of bits:

\oplus	0	1
0	0	1
1	1	0

-	0	1
0	0	0
1	0	1

- These are modulo-2 addition and modulo-2 multiplication, respectively.
- The operations are the same as the exclusive-or (XOR) operation and the AND operation.
- We will simply call them addition and multiplication so that we can use a matrix formalism to define the code.
- The two-element set $\{0,1\}$ together with this definition of addition and multiplication is a number system called a finite field or a Galois field, and is denoted by the label GF(2).

Modulo operation

- The modulo operation finds the remainder after division of one number by another (sometimes called modulus).
- Given two positive numbers, a (the dividend) and n (the divisor),
- a modulo \boldsymbol{n} (abbreviated as $\boldsymbol{a} \bmod \boldsymbol{n})$ is the remainder of the division of a by n.
- "83 mod 6" = 5
- " $5 \bmod 2 "=1$
- In MATLAB, $\bmod (5,2)=1$.
quotient 13
divisor $6 \longdiv { 8 3 }$ dividend
- Congruence relation
- $5 \equiv 1(\bmod 2)$

GF(2) and modulo operation

- Normal addition and multiplication (for 0 and 1):

- Addition and multiplication in GF(2):

GF(2)

- The construction of the codes can be expressed in matrix form using the following definition of addition and multiplication of bits:

\oplus	0	1
0	0	1
1	1	0

-	0	1
0	0	0
1	0	1

- Note that

$$
x \oplus 0=x \quad 0 \oplus 0=0
$$

check for difference:

$$
\begin{array}{lll}
x \oplus y=1 & \text { iff } & x \neq y \\
x \oplus y=0 & \text { if } & x=y
\end{array}
$$

The property above implies $-x=x \Rightarrow$ "subtraction = addition" By definition, " $-x$ " is something that, when added with x, gives 0 .

- Extension: For vector and matrix, apply the operations to the elements the same way that addition and multiplication would normally apply (except that the calculations are all in $\mathrm{GF}(2)$).

Examples

- Normal vector addition:

$$
=\begin{array}{lrrr}
{\left[\begin{array}{lrll}
{[1} & -1 & 2 & 1]
\end{array}+\right.} \\
{\left[\begin{array}{lrll}
{[-2} & 3 & 0 & 1]
\end{array}+\right.}
\end{array}
$$

- Vector addition in GF(2):

Alternatively, one can also apply normal vector addition first, then apply "mod 2 " to each element:

Examples

- Normal matrix multiplication:

$$
\begin{gathered}
(7 \times(-2))+(4 \times 3)+(3 \times(-7))=-14+12+(-21) \\
{\left[\begin{array}{lll}
7 & 4 & 3 \\
2 & 5 & 6 \\
1 & 8 & 9
\end{array}\right]\left[\begin{array}{cc}
-2 & 4 \\
3 & -8 \\
-7 & 6
\end{array}\right]=\left[\begin{array}{cc}
-23 & 14 \\
-31 & 4 \\
-41 & -6
\end{array}\right]}
\end{gathered}
$$

- Matrix multiplication in GF(2):
$(1 \cdot 1) \oplus(0 \cdot 0) \oplus(1 \cdot 1)=1 \oplus 0 \oplus 1$
Alternatively, one can also apply normal matrix multiplication first, then apply "mod 2 " to each element:

$$
\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 0 & 1 \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
0 & 1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
1 & 0 \\
0 & 0
\end{array}\right]
$$

$\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 1\end{array}\right]\left[\begin{array}{ll}1 & 1 \\ 0 & 1 \\ 1 & 0\end{array}\right]=\left[\begin{array}{ll}2 & 1 \\ 1 & 0 \\ 2 & 2\end{array}\right] \xrightarrow{\bmod 2}\left[\begin{array}{ll}0 & 1 \\ 1 & 0 \\ 0 & 0\end{array}\right]$

BSC and the Error Pattern

- For one use of the channel,

Add $e=0$:
output i, the same as the input Add $e=1$:
output is different from the input

- Again, to transmit k information bits, the channel is used n times.

$$
\begin{array}{rlr}
\text { Ex: } \underline{x}=01010 & \underline{0} \\
y & =01111 \quad \underline{x} \oplus y & =\underline{x} \underline{x}(+) \underline{e} \\
& =\underline{e}
\end{array}
$$

Its nonzero elements mark the

Additional Properties in GF(2)

- The following statements are equivalent

$$
\text { 1. } a \oplus b=c
$$

2. $a \oplus c=b$
3. $b \oplus c=a$

Having one of these is the same as having all three of them.

- The following statements are equivalent 1. $\underline{\mathbf{a}} \oplus \underline{\mathbf{b}}=\underline{\mathbf{c}}$

2. $\underline{\mathbf{a}} \oplus \underline{\mathbf{c}}=\underline{\mathbf{b}}$
3. $\underline{\mathbf{b}} \oplus \underline{\mathbf{c}}=\underline{\mathbf{a}}$

Having one of these is the same as having all three of them.

- In particular, because $\underline{\mathbf{x}} \oplus \underline{\mathbf{e}}=\boldsymbol{y}$, if we are given two quantities, we can find the third quantity by summing the other two.

Linear Block Codes

- Definition: \mathcal{C} is a (binary) linear (block) code if and only if \mathcal{C} forms a vector (sub)space (over $\left.\mathrm{FFF}_{(2)}\right)$.
- Equivalently, this is the same as requiring that if $\underline{\mathbf{x}}^{(1)}$ and $\underline{\mathbf{x}}^{(2)} \in \mathcal{C}$, then $\underline{\mathbf{x}}^{(1)} \oplus \underline{\mathbf{x}}^{(2)} \in \mathcal{C}$.
- Note that any (ronempmy linear code \mathcal{C} must contain $\underline{\mathbf{0}}$.

$$
\text { Take any } \underline{x} \in C \text {. By defn., must have } \underbrace{x \in}_{\underline{0}} \in \in C
$$

- Ex. The code that we considered in Problem 5 of HW4 is

$$
\mathcal{C}=\{00000,01000,10001,11111\}
$$

Is it a linear code?
ITS496 Spocial Studios in Information
Tochnology II
Prerequiste: None

Prerequiste: None
Special study on current topics related to information and

Special study on current
Cormurication Tectrolog
ITS497 Spocial Studies in Information Tochnology
Prerequiste: None
Special studes on current topics related to information and

ITS490 Extonded Information Tochnology $6(0-40-0)$ Training
Frerequiste. Senior standing \propto consont of Head of School atensve on-the-job training of at least 16 weeks (640 hours)
at a selected orgnization that provides information technolog) senvices. An indvidual comprehensive research \propto practical project must be corrducted under close supenision of facily members and supenisors assigned by the training organization. At the end of the triaining. the student must subrrit a repon of the project and also give a presentation.

MAS116 Mathomatics

Prerequiste: None
Mathematical induction; functions: imits: continuity, differential Calculus: derivatives of functions, higher order derivatives,
extrema, applications of derivatives, indeterminato forms extrema, applications of derivatives, indeterminate forms:
integral calculus: integrals of functions, techniques of integration, numerical integration, improper integrals: introduction to differential equations and their applications sequence and series: Taylor's expansion, infinite sums.

MAS117 Mathomatics Il $3(3-0-6)$ Frerequisite: Have earned credits of MAS116 or consent of Head of School
tree nensionl pace: wirs and in mas thee-dimensional space: vectors, ines, planes, and surfaces h of real whed tunctions of seevel veietlos ad is applotione partiel diviatives, extremes of functions, functions of higher defintives Lagrageo mutiplers topics in vector calaik: fin and surface integrals, Green's theocem.

eigenvalue problems, eigenvalues and eigenvectors. analysis: complex numbers, analytic functions, complex integration, conformal mapping: calculus of variations: introduction to tensor analysis: Cartesian tensors and their algebra.
MAS215 Difforontial Equations $3(3-0-6)$ Frerequiste: Have earned credts of MAS117 or consent of
Head of Schod Orfnary dfferentinl aqutions
differential equations of tigher order: mat ineax orfinary hormogeneous solutions, method of variation of parameters: general ordinary differential equations: series solutions. Fosd luctions, Lapace translommaton; Fourier analysis. Fourier senies, integrals and translomms: partial differential quations: method of separating variables, applications of aplace and Fourier transforms applications to intital-value

MES211 Thormofluids 3(3-0-6)
Frerequiste: Have earned credits of (SCS138 \propto GIS121) or Fundamental concepts in thermodynamics. The frst and second law of thermodynamics. Basic concopts and basic repperies of fuids. Furdamentals of fuid staticis. Fundamentals of fuid dynamics. Characteristics of fuids such as laminar and urbuient fow:
MES231 Enginooring Mochanics 3(3-0-6)
(For non-mechanical engineering students) Head of Schood
Force systems; resutants equibibrium; tusses; frames and propertios of in torce diagrams: mass and geometric protides of objects; fluid statics: kinematics and kinetios of

MES300 Enginooring Drawing $3(2-3-4)$ Frerequisite: None
Introduction to basic principle of engineering drawing, induding letering applied geornetry, athographic dawing and sketching. drawng. dimensicring, three dimensicring, basic descriptive geometry dealing with points. ines \& planes and their mationships in space ands.

MES302 Introduction to Computor
2(1-3-2)
Aidod Dosign Head al School
Use of industrial Computer Aided Design software for detai design and dratting in various engineering fieks such as in

MAS210 Mathematics III 3(3-0-6)

Prerequisite: Have earned credits of MAS117 or consent of Head of School Linear algebra: vector spaces, linear transformation, matrices, determinants, systems of linear equations, Gaussian elimination, eigenvalue problems, eigenvalues and eigenvectors, diagonalization, complex matrices; introduction to complex analysis: complex numbers, analytic functions, complex integration, conformal mapping; calculus of variations; introduction to tensor analysis:
Cartesian tensors and their algebra.

Ex. Checking Linearity

- $\mathcal{C}=\{00000,01000,10001,11111\}$
- Step 1: Check that $0 \in \mathcal{C}$.
- OK for this example.
- Step 2: Check that
if $\underline{\mathbf{x}}^{(1)}$ and $\underline{\mathbf{x}}^{(2)} \in \mathcal{C}$, then $\underline{\mathbf{x}}^{(1)} \oplus \underline{\mathbf{x}}^{(2)} \in \mathcal{C}$.

			¢ $\notin C$		$\Rightarrow \text { not }$
\oplus	00000	01000	10001	11111	
00000	00000/	01000	10001	11111	
01000	\checkmark	00000	$11001 x$		
10001	\checkmark		00000		
1111	\checkmark			00000	

Ex. Checking Linearity

- $\mathcal{C}=\{00000,01000,10001,11111\}$
- Step 1: Check that $0 \in \mathcal{C}$.
- OK for this example.
- Step 2: Check that

$$
\text { if } \underline{\mathbf{x}}^{(1)} \text { and } \underline{\mathbf{x}}^{(2)} \in \mathcal{C} \text {, then } \underline{\mathbf{x}}^{(1)} \oplus \underline{\mathbf{x}}^{(2)} \in \mathcal{C} \text {. }
$$

- Here, we have many counter-examples. So, the code is not linear.

\oplus	00000	$\mathbf{0 1 0 0 0}$	$\mathbf{1 0 0 0 1}$	$\mathbf{1 1 1 1 1}$
$\mathbf{0 0 0 0 0}$	00000	01000	10001	11111
$\mathbf{0 1 0 0 0}$	01000	00000	11001	10111
$\mathbf{1 0 0 0 1}$	10001	11001	00000	01110
$\mathbf{1 1 1 1 1}$	11111	10111	01110	00000

Checking Linearity

- Step 1: Check that $0 \in \mathcal{C}$.
- Step 2: Check that

$$
\text { if } \underline{\mathbf{x}}^{(1)} \text { and } \underline{\mathbf{x}}^{(2)} \in \mathcal{C} \text {, then } \underline{\mathbf{x}}^{(1)} \oplus \underline{\mathbf{x}}^{(2)} \in \mathcal{C} .
$$

- It may seem that we need to check $|\mathcal{C}|^{2}$ pairs.
- Actually, we need to check only $\binom{|i|-1}{2}$ pairs.

\oplus	00000	01000	10001	11111	$\underline{\underline{x}} \oplus \underline{0}=\underline{\underline{x}}$
00000	+ 3				
01000	Bi f				$\underline{\underline{x}} \oplus \underline{\mathrm{x}}=\underline{\mathbf{0}}$
10001		11001	00000	01110	
11111	\%	10111	01110	00000	
$\underline{\underline{x}}^{(1)} \oplus \underline{\underline{x}}^{(2)}=\underline{\underline{\mathbf{x}}}^{(2)} \oplus \underline{\underline{x}}^{(1)}$					

Creating

Ex. Checking Linearity

- We have checked that $\mathcal{C}=\{00000,01110,10001,11111\}$
is not linear.
- Change one codeword in \mathcal{C} to make the code linear.

\oplus	00000			
00000				

Ex. Checking Linearity

- We have checked that
 is not lnear.
- Chang\& one codeword in \mathcal{C} tomake the code linear.

```
For linearity, we always need \underline{0}
```

If we want these two to be in our code, then their sum must be in our code too. So, we change 11111 to 11001.

\oplus	00000	01000	10001	11001
$\mathbf{0 0 0 0 0}$				
$\mathbf{0 1 0 0 0}$			11001	10001
$\mathbf{1 0 0 0 1}$				01000
$\mathbf{1 1 1 1}$				

Ex. Checking Linearity

- We have checked that $\mathcal{C}=\{00000,01000,10001,11111\}$
is not linear.
- Change one codeword in \mathcal{C} to make the code linear.
- Three solutions: 11001
- $\mathcal{C}=\{00000,01000,10001,4114\}$
- $\mathcal{C}=\{00000,01000,10111,11111\}$

\oplus	00000	01000	$\mathbf{1 0 0 0 1}$	11111
$\mathbf{0 0 0 0 0}$	00000	01000	10001	11111
$\mathbf{0 1 0 0 0}$	01000	00000	11001	10111
$\mathbf{1 0 0 0 1}$	10001	11001	00000	01110
$\mathbf{1 1 1 1 1}$	11111	10111	01110	00000

- $\mathcal{C}=\{00000,01110$ 01000,10001,11111 $\}$

Linear Block Codes: Motivation (1)

- Why linear block codes are popular?
- Recall: General block encoding
- Characterized by its codebook.

- Can be realized by combinational/combinatorial circuit.
- If lucky, can used K-map to simplify the circuit.

Linear Block Codes: Motivation (2)

- Why linear block codes are popular?
- Linear block encoding is the same as matrix multiplication.
- See next slide.
- The matrix replaces the table for the codebook.
- The size of the matrix is only $k \times n$ bits.
- Compare this against the table (codebook) of size $2^{k} \times(k+n)$ bits for general block encoding.
- Linearity \Rightarrow easier implementation and analysis
- Performance of the class of linear block codes is similar to performance of the general class of block codes.
- Can limit our study to the subclass of linear block codes without sacrificing system performance.

Example

- $\mathcal{C}=\{00000,01000,10001,11001\}$
- Let

$$
\underline{b} G=b_{1} g^{(1)} \Theta b_{2} g^{(2)}
$$

$\underline{b}=\left[b_{1} b_{2}\right]$

- Find $\underline{\mathbf{b}} \mathbf{G}$ when $\underline{\mathbf{b}}=1000 . \quad \underline{\mathbf{L}} \mathbf{G}=\left[\begin{array}{lllll}0 & 0 & 0 & 0 & 0\end{array}\right]$
- Find $\underline{\mathbf{b}} \mathbf{G}$ when $\underline{\mathbf{b}}=\left[\begin{array}{ll}0 & 1\end{array}\right]$. $\left[\begin{array}{lllll}1 & 0 & 0 & 0 & 1\end{array}\right]$
- Find $\underline{\mathbf{b}} \mathbf{G}$ when $\underline{\mathbf{b}}=\left[\begin{array}{ll}1 & 0\end{array}\right]$.
$\left[\begin{array}{lllll}0 & 1 & 0 & 0 & 0\end{array}\right]$
- Find $\underline{\mathbf{b}} \mathbf{G}$ when $\underline{\mathbf{b}}=\left[\begin{array}{ll}1 & 1\end{array}\right]$.
$\left[\begin{array}{lllll}1 & 1 & 0 & 0 & 1\end{array}\right]$

$$
\begin{aligned}
& \text { 9(1) } \\
& \mathbf{G}=\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
\hline 1 & 0 & 0 & 0 & 1 \\
\hline & l^{(2)}
\end{array}
\end{aligned}
$$

Block Matrices

- A block matrix or a partitioned matrix is a matrix that is interpreted as having been broken into sections called blocks or submatrices.
- Examples:

$$
\left(\begin{array}{cc}
10 & 6 \\
9 & 7
\end{array}\right)
$$

$$
\left(\begin{array}{ccc}
\begin{array}{|lll}
2 & C^{2} & 5 \\
3 & 3 & 4
\end{array} \\
\begin{array}{lll}
3 & 3 & 4 \\
7 & 2 & 5 \\
7 & 3 & 6
\end{array} & \left.\begin{array}{ccccc}
10 & 2 \\
5 & 10 & 5 & 3 & 6 \\
8 & 10 & 5 & 5 & 6 \\
3 & 10 & 6 & 10 & 3 \\
9 & 8 & 3 & 6 & 5
\end{array}\right)
\end{array}\right)
$$

Block Matrix Multiplications

- Matrix multiplication can also be carried out blockwise (assuming that the block sizes are compatible).

MIT OpenCourseWare 2.34 M subscribers

MIT 18.06 Linear Algebra, Spring 2005 Instructor: Gilbert Strang

Introduction to
LINEAR ALGEBRA
FIFTH EDITION

GILBERT STRANG

Ex: Block Matrix Multiplications

$$
\begin{aligned}
& =\left(\begin{array}{lll}
108 & 73 & 136 \\
155 & 85 & 164
\end{array}\right)\left(\begin{array}{lllll}
175 & 150 & 193 & 126 & 149 \\
224 & 213 & 197 & 158 & 165
\end{array}\right) \\
& \mathrm{AC}+\mathrm{BE} \quad \mathrm{AD}+\mathrm{BF} \\
& \left(\begin{array}{llll}
10 & 6 \\
9 & 7 & X_{3}^{6} & 4 \\
5 & 3 \\
9
\end{array}\right) \times\left(\begin{array}{llll}
2 & 2 & 5 & 10 \\
3 & 3 & 4 & 5 \\
3 & 3 \mathrm{G} 4 & 1 \\
7 & 2 & 5 & 3 \\
8 & 3 & 6 & 9
\end{array}\right)\left(\begin{array}{cccc}
2 & 10 & 2 & 5 \\
10 & 5 & 3 & 6 \\
1 & 5 \mathrm{H} & 5 & 6 \\
10 & 6 & 10 & 3 \\
8 & 3 & 6 & 5
\end{array}\right) \\
& \left.=\left(\begin{array}{llll}
108 & 73 & 136 & 175 \\
155 & 85 & 164 & 224
\end{array}\right) ~ \begin{array}{llll}
150 & 193 & 126 & 149 \\
213 & 197 & 158 & 165
\end{array}\right)
\end{aligned}
$$

Linear Block Codes: Generator Matrix

For any linear code, there is a matrix $\mathbf{G}=$
called the generator matrix

such that, for any codeword $\underline{\mathbf{x}}$, there is a message vector $\underline{\mathbf{b}}$ which produces $\underline{\mathbf{x}}$ by

$$
\begin{aligned}
& \underline{\mathbf{x}}=\underline{\mathbf{b}} \mathbf{G}=\left[\begin{array}{llll}
b_{1} & b_{2} & \cdots & b_{n}
\end{array}\right] \\
& =b, 9^{(1)} \Phi b, g^{(2)}(4) \cdot \\
& \oplus{ }^{(+1} b_{k} g^{(k)}
\end{aligned}
$$

From \underline{b} to $\underline{\mathbf{x}}$

$$
\begin{aligned}
\underline{\mathbf{x}} & =\underline{\mathbf{b}} \mathbf{G}=\left[\begin{array}{llll}
b_{1} & b_{2} & \cdots & b_{k}
\end{array}\right]\left[\begin{array}{l}
\frac{\underline{\mathbf{g}}^{(1)}}{\underline{\mathbf{g}}^{(2)}} \\
\vdots \\
\frac{\mathbf{g}^{(k)}}{\square}
\end{array}\right]_{k \times n} \\
& =b_{1} \underline{\mathbf{g}}^{(1)} \oplus b_{2} \underline{\mathbf{g}}^{(2)} \oplus \cdots \oplus b_{k} \underline{\mathbf{g}}^{(k)}=\sum_{j=1}^{k} b_{j} \underline{\mathbf{g}}^{(j)}
\end{aligned}
$$

- Any codeword is simply a linear combination of the rows of \mathbf{G}.
- The weights are given by the bits in the message $\underline{\mathbf{b}}$

Linear Combination in GF(2)

- A linear combination is an expression constructed from a set of terms by multiplying each term by a constant (weight) and adding the results.
- For example, a linear combination of x and y would be any expression of the form $a x+b y$, where a and b are constants.
- General expression:

$$
c_{1} \underline{\mathbf{a}}^{(1)}+c_{2} \underline{\mathbf{a}}^{(2)}+\cdots+c_{k} \underline{\mathbf{a}}^{(k)}
$$

- In $\mathrm{GF}(2), c_{i}$ is limited to being 0 or 1 . So, a linear combination is simply a sum of a sub-collection of the vectors.

Linear Block Codes: Generator Matrix

For any linear code, there is a matrix $\mathbf{G}=$
called the generator matrix
 such that, for any codeword $\underline{\mathbf{x}}$, there is a message vector $\underline{\mathbf{b}}$ which produces $\underline{\mathbf{X}}$ by

$$
\underline{\mathbf{x}}=\underline{\mathbf{b} G}=\sum_{j=1}^{k} b_{j} \underline{\mathbf{g}}^{(j)}
$$

Note:

(1) Any codeword can be expressed as a linear combination of the rows of \mathbf{G}

Note also that, given a matrix \mathbf{G}, the (block) code that is constructed by (2) is always linear.

Fact: If a code is generated by plugging in every possible $\underline{\mathbf{b}}$ into $\underline{\mathbf{x}}=\underline{\mathbf{b}} \mathbf{G}$, then the code will automatically be linear.

Proof

If \mathbf{G} has k rows. Then, $\underline{\mathbf{b}}$ will have k bits. We can list them all as $\underline{\mathbf{b}}^{(1)}, \underline{\mathbf{b}}^{(2)}, \ldots, \underline{\mathbf{b}}^{\left(2^{k}\right)}$. The corresponding codewords are

$$
\underline{\mathbf{x}}^{(i)}=\underline{\mathbf{b}}^{(i)} \mathbf{G} \text { for } i=1,2, \ldots, 2^{k} .
$$

Let's take two codewords, say, $\underline{\mathbf{x}}^{\left(i_{1}\right)}$ and $\underline{\mathbf{x}}^{\left(i_{2}\right)}$. By construction, $\underline{\mathbf{x}}^{\left(i_{1}\right)}=\underline{\mathbf{b}}^{\left(i_{1}\right)} \mathbf{G}$ and $\underline{\mathbf{x}}^{\left(i_{2}\right)}=\underline{\mathbf{b}}^{\left(i_{2}\right)} \mathbf{G}$. Now, consider the sum of these two codewords:

$$
\underline{\mathbf{x}}^{\left(i_{1}\right)} \oplus \underline{\mathbf{x}}^{\left(i_{2}\right)}=\underline{\mathbf{b}}^{\left(i_{1}\right)} \mathbf{G} \oplus \underline{\mathbf{b}}^{\left(i_{2}\right)} \mathbf{G}=\left(\underline{\mathbf{b}}^{\left(i_{1}\right)} \oplus \underline{\mathbf{b}}^{\left(i_{2}\right)}\right) \mathbf{G}
$$

Note that because we plug in every possible $\underline{\mathbf{b}}$ to create this code, we know that $\underline{\mathbf{b}}^{\left(i_{1}\right)} \oplus \underline{\mathbf{b}}^{\left(i_{2}\right)}$ should be one of these $\underline{\mathbf{b}}$. Let's suppose $\underline{\mathbf{b}}^{\left(i_{1}\right)} \oplus \underline{\mathbf{b}}^{\left(i_{2}\right)}=\underline{\mathbf{b}}^{\left(i_{3}\right)}$ for some $\underline{\mathbf{b}}^{\left(i_{3}\right)}$. This means

$$
\underline{\mathbf{x}}^{\left(i_{1}\right)} \oplus \underline{\mathbf{x}}^{\left(i_{2}\right)}=\underline{\mathbf{b}}^{\left(i_{3}\right)} \mathbf{G} .
$$

But, again, by construction, $\underline{\mathbf{b}}^{\left(i_{3}\right)} \mathbf{G}$ gives a codeword $\underline{\mathbf{x}}^{\left({ }_{3}\right)}$ in this code. Because the sum of any two codewords is still a codeword, we conclude that the code is linear.

Linear Block Code: Example

bc

- Find the codeword for the message $\underline{\mathbf{b}}=\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]$

$$
100101
$$

- Find the codeword for the message $\underline{\mathbf{b}}=\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]$

011101

- How many codewords do this code have?

Linear Block Code: Codebook

$$
\mathbf{G}=\left(\begin{array}{llllll}
1 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 0
\end{array}\right) \quad \begin{aligned}
\underline{\mathbf{x}} & =\underline{\mathbf{b}} \mathbf{G}=\left(b_{1} b_{2} b_{3}\right)\left(\begin{array}{cccccc}
1 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 0
\end{array}\right) \\
& =\left(b_{1}, b_{2}, b_{3}, b_{1} \oplus b_{3}, b_{2} \oplus b_{3}, b_{1} \oplus b_{2}\right)
\end{aligned}
$$

$\underline{\mathbf{b}}$				$\underline{\mathbf{x}}$					
0	0	0	0	0	0	0	0	0	
0	0	1	0	0	1	1	1	0	
0	1	0	0	1	0	0	1	1	
0	1	1	0	1	1	1	0	1	
1	0	0	1	0	0	1	0	1	
1	0	1	1	0	1	0	1	1	
1	1	0	1	1	0	1	1	0	
1	1	1	1	1	1	0	0	0	

